Knockdown of prion protein (PrP) by RNA interference weakens the protective activity of wild-type PrP against copper ion and antagonizes the cytotoxicity of fCJD-associated PrP mutants in cultured cells.
نویسندگان
چکیده
Development of the pathogenesis of transmissible spongiform encephalopathies (TSEs) requires the presence of both the normal host prion protein (PrPC) and the abnormal pathological proteinase-K resistant isoform (PrPSc). Reduction of PrPC levels has been shown to extend survival time after prion infection. In this report, based on analysis of the known sequences of human PrP, we constructed two small interfering RNA (siRNA) duplexes targeting the segments of amino acids (aa) 108-114 (Ri2) and aa 171-177 (Ri3). Western blot analysis results revealed that these PrP-specific siRNAs could effectively knock down the levels of either endogenous PrP in human neuroblastoma SHSY-5Y cells or recombinant PrP transfected with the plasmid expressing the full-length human PrP in human embryonic kidney (HEK) 293T cells. Meanwhile, the two siRNAs also showed a significant effect on the reduction of the expression of the PrP-PG9 and PrP-PG12 familial Creutzfeldt-Jakob disease (CJD)-associated PrP mutants with four and seven extra octarepeats, in the cells transfected with the respective expression plasmids. MTT tests identified that knockdown of wild-type PrP by Ri2 and Ri3 did not change the cell growth capacities, but significantly decreased the cell resistances against the challenge of Cu2+. Co-expression of Ri2 and Ri3 partially antagonized the cytotoxicity caused by expressing PrP-PG9 and PrP-PG12 in the two cell lines. Moreover, the rescuing effectiveness of PrP siRNAs was time-related, with the more efficient antagonism of the cytotoxicity of fCJD-associated PrP mutants occurring at the early stages after transfection. The data shown here provide useful clues for seeking potential therapeutic tools for prion diseases.
منابع مشابه
Doppel-induced cytotoxicity in human neuronal SH-SY5Y cells is antagonized by the prion protein.
Doppel (Dpl) is a prion (PrP)-like protein due to the structural and biochemical similarities; however, the natural functions of Dpl and PrP remain unclear. In this study, a 531-bp human PRND gene sequence encoding Dpl protein was amplified from human peripheral blood leucocytes. Full-length and various truncated human Dpl and PrP proteins were expressed and purified from Escherichia coli. Supp...
متن کاملThe octarepeat region of prion protein, but not the TM1 domain, is important for the antioxidant effect of prion protein.
The cellular prion protein (PrP(c)) plays a crucial role in the pathogenesis of prion diseases, but its physiological function is far from understood. Several candidate functions have been proposed including binding and internalization of metal ions, a superoxide dismutase-like activity, regulation of cellular antioxidant activities, and signal transduction. The transmembrane (TM1) region of Pr...
متن کاملRecombinant human prion protein mutants huPrP D178N/M129 (FFI) and huPrP+9OR (fCJD) reveal proteinase K resistance.
The Semliki-Forest virus (SFV) system was used to overexpress human wild-type and mutant prion proteins as well as FLAG-tagged human and bovine PrP in mammalian cells. The application of recombinant SFV vectors allowed a high-level production of highly glycosylated prion proteins with a molecular weight ranging from 25 to 30 kDa for recombinant wild-type human PrP and from 26 to 32 kDa for wild...
متن کاملDefective retrotranslocation causes loss of anti-Bax function in human familial prion protein mutants.
Prion protein (PrP) inhibits the activation of proapoptotic Bax in primary human neurons and MCF-7 cells. Because neuronal apoptosis occurs in human prion diseases, here we examine the anti-Bax function of familial PrP mutants. All Creutzfeldt-Jakob disease and fatal familial insomnia-associated prion protein mutations partially or completely lose the anti-Bax function in human neurons and, exc...
متن کاملGlycoform-Selective Prion Formation in Sporadic and Familial Forms of Prion Disease
The four glycoforms of the cellular prion protein (PrP(C)) variably glycosylated at the two N-linked glycosylation sites are converted into their pathological forms (PrP(Sc)) in most cases of sporadic prion diseases. However, a prominent molecular characteristic of PrP(Sc) in the recently identified variably protease-sensitive prionopathy (VPSPr) is the absence of a diglycosylated form, also no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of molecular medicine
دوره 28 3 شماره
صفحات -
تاریخ انتشار 2011